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t, are chosen so that ¢, = 2nw/N\; (n = any integer), the sine-
cosine terms are seen to vanish, and only the first exponential
term and constants remain; the radial displacements e, at
time ¢, are then given by the particularly simple relation

en = (g™ ™/ — 1) @1

and a similar expression results for ¢.. For any conveniently
chosen integer 7, e, and ¢, constitute new initial conditions
for the next time interval. The accuracy of the final results
obtained in this manner is beiter than first order in e and ¢;
though convergence has not been proved, the assumption
seems reasonable that by further subdivision of time intervals
Egs. (14) and (15) yield a sequence of solutions which tends
to the exact solution of the problem. ¥or low thrust devices
that often necessitate integrations over hundreds of orbits,
the method just outlined will have computational advant-
ages.

The inclusion of thrust in the forementioned formulism
involves merely the addition of terms, since the basic equa-
tions are linear (cf., the previous footnote). If the Laplace
transforms of ¢(f) and ¢(f) are known and if Fy(s) and Fy(s)
are the transforms of thrust-functions Fi(f) and F.(t), then,
to include the thrust, [4 + F.(s)] must be inserted in place
of A and [B + Fu(s)] in place of B, and the inverse trans-
forms then yield the complete response that is the comple-
mentary function and a particular integral.
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Comparison of Error Transfer Matrices
for Circular Orbits
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N problems dealing with the motion of orbiting bodies, it

is often necessary to investigate the propagation of errors

in position and velocity as the body progresses in its orbit. A

convenient tool for such studies is the error matrix, which re-

lates position and velocity errors at two arbitrary points of an
orbit,
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For circular orbits, there are two matrices in common use.
The first, which may be referred to as the Clohessy-Wiltshire!
maftrix, refers to the relative motion between an orbiting body
and a reference satellite in circular orbit. The relative vector
is expressed in terms of a Cartesian coordinate system
centered on the reference satellite and rotating at a constant
angular rate in the reference orbital plane to keep one axis
always horizontal. The second formulation may be called the
Duke? matrix because of its use in referenced reports. This
also describes the relative motion between an orbiting body
and a reference satellite in circular orbit, but a different coor-
dinate system is employed. In this case the quantities em-
ployed are the relative differences in distance to the center
of the force field, central angle subtended, velocity vector
magnitude, and velocity vector angle with respect to the
vertical. A recent paper by Wisneski® presents a detailed
approach to the derivation of the Duke matrix.

Because of the difference in coordinate systems employed,
the two formulations appear to be different. Nevertheless,
they are in fact exactly equivalent, and each is based upon the
same linearizing assumptions and approximations. It is the
purpose of this note to show the equivalence of the two formu-
lations. To avoid confusion, the first formulation will be
henceforth referred to as Clohessy-Wiltshire, and the second
will be called Duke.

Derivation of Transformation Equations

The pertinent geometry is given in Fig. 1. The reference
satellite in circular orbit is labeled S; the orbiting body of
interest is located at P. A planar situation only is deseribed.
Although a third dimension (perpendicular to the orbital
plane) and a time perturbation may be added, these have
been omitted since the matrix description of each formulation
gives identical terms for each quantity.

The satellite is moving counterclockwise at constant trans-
lational velocity V, angular velocity w, and distance R from
the center of the force field O. In the Clohessy-Wiltshire
system the relative position of the orbiting body is measured
with respect to the rotating Cartesian axes labeled z-y. The
coordinates are designated Az, Ay for position, and Az, Ay
for velocity.

For the Duke system, the reference satellite is described by
the parameters R, 8, V,and 8. The orbiting body is described
by R,, 0,, Vp, and B,. The relative parameters are then

AR =R, — R A§ = 0, —
AV =V, =V AB =B, — B

Note that B is actually constant at 90° because of the
circularity of the reference satellite’s orbit.

The relations between the Clohessy-Wiltshire and Duke
systems are derived as follows, noting that

ARK R A0 = very small angle
AV KLV AB = very small angle
For horizontal position,
Ar = —(R 4+ AR) sinAé
=~ —RA§ )]
For vertical position, |

= (R 4+ AR) cosAf — R

©)
= AR

For horizontal velocity,
At = —V,sin(B, + A8) + wAy + V

Here the wAy term arises because of the rotation of the coor-
dinate system.
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- Note that sin(8, + A8) = cos(90° — 3, — Af) = cos(— AB
— Af), since 8 = 90°. Since AB and A are very small,

Az = —(V, — V) + wAy

or

Az = — AV + wAy
Substituting relation (2),

Ag = —AV + wAR 3)

For vertical velocity,
Ay = Vycos(By + AS) — wAx
But
cos(B, + A0) = —sin(AB + Af) = —AB8 — Af

since 8 = 90°. Also, Az =~ —RA# from relation (1), and
V, =V 4+ AV. Hence, ‘

Ay = —(V + AV)(AB + Af) + wRAS

Noting that V = wR and neglecting second-order differences,
this becomes

Aj = —VAB 4)

Collecting the results of the preceding analysis, the conver-
sions from the Duke to the Clohessy-Wiltshire systems are

Az = —RA# Ay =~ AR
AL =~ — AV + wAR Ay = —-VAB

By algebraic manipulation of relations (1-4), the following
inverse results are obtained:

AR = Ay (5)
Af =~ — Az/R (6)
AV = — Az + wAy (7
AB =~ —Ay/V ()

The two-dimensional forms of the Clohessy-Wiltshire and
the Duke matrices are as follows:

Clohessy-Wilishire Equations

Az, 1 6(wt — sinwt)
Ay, | =10 4 — 3 coswt
Az, 0 6w(1 — coswt)
Ajy 0 3w sinwt
Duke Equations
AR, 2 — coswt 0
Af, | }—a (2 sinwt — 3wl) 1
AV, w (coswt — 1)
Aﬁ; b 1& Sinwt O

4 .
— sinwt — 3¢
w

2
— (1 — coswt)
w

%. (4 sinwt — 3wl)

2 coswt — 1
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Fig. 1 Coordinate systems.

hessy-Wiltshire system). As an illustration, the equation for
Az, is formed below.
Rewriting Eq. (3),

Aﬁi}l = —AV; + wAR,

Now substitute for AV, and AR, using the Duke transfer
relations:

Az, = — [wlcoswt — 1)AR; + (2 coswt — 1)AV, +
(V sinwt) AB:] + w[(2 — coswt) AR; + (2/w) X
(1 — eoswt) AV; — (R sinwt) AB:]

After collecting terms and noting that V = wR, this becomes

Ay = (3 — 2 coswl) AR; + (3 — 4 coswt) AV, —
(2V sinwt) AB:

Equations (5, 7, and 8) are now used to substitute for AR;,
AV, and AB;:

2 (1 — coswt) || Az
w

2 1 .
— = (1 — coswt) ~— sinwt Ay
w w
4 coswt — 3 2 sinwt Ag;
—2 sinwt coswl Ags

—R sinwt AR;

2(1 — coswt) Ag;
V sinwt AV,
— T% sinel coswt AB:

where subscript ¢ indicates values at time ¢ after initial conditions, and subscript ¢ denotes initial conditions.

IMustrative Transformation from Duke Matrix to
Clohessy-Wiltshire Matrix

The Duke transfer equations express relative position and
velocity at an arbitrary time ¢ as a function of the initial
values (i.e., relative position and velocity at the initial time).
Their matrix is given in terms of a AR, A8, AV, AS system.
Using the transformations just derived, their matrix may be
expressed in terms of a Az, Ay ,A%, Ay system (i.e.,the Clo-

Az, = (3 — 2 coswt)Ay; + (3 — 4 coswt) X
(~ A% — wAy) — 2V sinwt) [— (Ag:/V)]

After expanding and collecting terms, the following result is
obtained: »

Az, = 6w(l — coswt)Ay; +
(4 coswt — 3)Ad; + (2 sinwt) Ay (9)

Equation (9) is the desired Clohessy-Wiltshire transformation.
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Summary

The foregoing analysis shows that the Clohessy-Wiltshire
and Duke matrices are equivalent. They stem, in fact, from
the same linearizing approximations. The principal assump-
tions are 1) the distance between orbiting body and reference
satellite is very small compared to the distance to the center of

the force field; and 2) the variation of the gravity field is .

linear in the vertical direction over the region of interest.

Examination of the transformation equations reveals an
interesting lack of symmetry, i.e., the horizontal velocity
transformation is cross-coupled with the vertical position.
Yet no coupling term appears for the vertical velocity. The
coupling is caused by the coordinate system rotation. Since
the Clohessy-Wiltshire system rotates with respect to inertial
space, the transformation between it and a fixed inertial
system contains symmetrical cross-coupling terms for each
velocity axis. The lack of symmetry in the transformation
equations under discussion may be interpreted to mean that
the Duke system appears to be rotating when vertical veloci-
ties are considered but appears to be fixed for horizontal
velocities. Hence the correct translation of velocities for this
system to those in an inertial coordinate system requires con-
siderable care.
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Particle Damping of a Plane Acoustic
VVavein.SoﬁdﬂPropeﬂant
Combustion Gases
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Nomenclature

particle radius, cm

velocity of sound in the gas, cm/sec

specific heat of the gas at constant volume, cal/g-°K

energy flux in the plane wave, erg/cm?2sec

acoustic frequency, cps

defined by Eq. (2), dimensionless

w/c, em ™1

decay length for all three mechanisms combined, cm

decay length for bulk damping of the pure gas phase, cm

decay length for particle damping, e

decay length for pure gas phase wall damping, cm

particle number density in combustion products, em=—3

equilibrium pressure, dynes/cm?

tube radius, cm

volume of condensed products per unit volume of total
combustion products

distance, cm

(w/29)12 cm ™t

ratio of specific heats
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Fig.1 Decay length for particle damping as a function of
particle radius. For the indicated frequencies, the short
vertical lines give the largest particle radii for which the
calculation is valid. The calculation wasrestricted to Ba <

10-1.
A = gas phase thermal conductivity, cal/sec-cm-°K
» = dynamic viscosity, poise
v = kinematic viscosity, stokes
po = gas phase density, g/cm?
p = solid particle density, g/em?
o = acoustic damping constant, cm !
w = circular frequency, rad/sec

T is a matter of general knowledge that acoustic com-
bustion instability in solid propellant rocket motors can

often be cured by adding certain substances to the solid pro-
pellant itself. These substances may or may not participate
in the chemical reactions of the combustion process, but
they always produce solid or liquid particles in the combus-
tion gases. Additives such as Al and Mg powders, which
participate in the combustion reactions, appear to be more
effective in suppressing acoustic instability than do inert
additives.

The mechanism by which these additives suppress insta-
bility is not known. They may act by decreasing the effec-
tiveness of the acoustic amplifiers in the motor or by in-
creasing the acoustic losses. It is the purpose of this note
to present calculations that investigate the latter possibility.
The viscous damping that is caused by the presence of solid
or liquid particles in the combustion gases is calculated and
compared with that of the pure gas phase without particles.
The particular case of a propellant that contains 109, alu-
minium by weight is considered. A plane acoustic wave
is assumed, and the effect of particle size on the decay length
of the wave is calculated for frequencies from 103 to 2 X
10* cps and for pressures of 1 and 28 atm. The results are
compared with the decay length for thermal and viscous
damping in the bulk of the pure gas phase, and with the
decay length for thermal and viscous wall damping of the
pure gas phase when the wave is traveling axially along a
cylindrical tube of 5-cm radius.

Previous work concerning the effect of particle damping
on a particular mode of oscillation in a solid propellant rocket
motor may be found in Ref. 1.

Analysis

Reference 2 gives the results of a theory of the energy ab-
sorbed by viscous damping from a plane acoustic wave as it
passes over a spherical particle that is free to move.

For the case where the plane wave is propagated through a
medium that contains many such particles, all of radius e,
and where the particles are not so closely spaced that they
interact with one another, the rate of dissipation of acoustic



